
  
一般社団法人 電子情報通信学会 信学技報 

THE INSTITUTE OF ELECTRONICS,                                 IEICE Technical Report  

INFORMATION AND COMMUNICATION ENGINEERS 

 

 

 

CSSP: Cooperative Sensor-data Stream Protocol 
Ryosuke OZAKI, Niwat THEPVILOJANAPONG§, Teemu LEPPÄNEN§§, Naofumi KITSUNEZAKI, and Yoshito TOBE 

 

Department of Integrated Information Technology, College of Science and Technology, Aoyama Gakuin University  

5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5258 Japan 

E-mail:  {ryosuke.ozaki, yoshito-tobe}@rcl-aoyama.jp, kitsunezaki@it.aoyama.ac.jp 

§School of Engineering, Mie University 

1577 Kurimamachiya-cho, Tsu City, Mie Prefecture, Japan 514-8507 Japan 

E-mail: wat@net.info.mie-u.ac.jp 

§§ Faculty of Technology,  University of Oulu 

Central University Administration, Pentti Kaiteran katu 1, 

P.O. BOX 8000, FI-90014 Finland 

E-mail: teemu.leppanen@ee.oulu.fi 

 

Abstract  In this paper we present the design and implementation of Cooperative Sensor-data Stream Protocol (CSSP) for 

smartphone-based participatory sensing applications. The objective of CSSP is scheduling the activities of sensing and transmitting data 

among clients to reduce the total energy consumption of clients. In CSSP, a server manages all the sessions between the server and clients 

and determines a transmission interval at each client. The CSSP client receives the information about the interval and transmits the data 

based on the notified interval. We have designed CSSP messages over HTTP and implemented client software on Android OS. Our 

preliminary experiments show that CSSP can contribute to the reduction of total energy consumption for the same sensing effect. 

 

Keyword  Networked Sensing，Mobile Sensing,  Cooperation 

 

1. Introduction 

Due to the proliferation of smart phones, participatory 

sensing is being paid much attention to. One of the 

problems in participatory sensing is it s random sampling 

and the incompleteness of sensing coverage. Often, more 

than necessary amount of sensing data is uploaded for the 

same location at the same time. This will result in 

ineffective energy consumption of smart phones.  

To cope with the above problem, we design a protocol 

for cooperation among smart-phone clients called 

Cooperative Sensor-data Stream Protocol (CSSP).  

In CSSP, we assume that clients do not directly 

communicate with each other. Rather, they only 

communicate with a server which has connections with 

each client. Thus the server control all the information 

about the locations and session time of the clients and 

determines a transmission interval of each client. The 

CSSP messages are built on HTTP and this will necessitate 

rate control at the application level.  

We have designed CSSP messages over HTTP and 

implemented client software on Android OS. Our 

preliminary experiments show that CSSP can contribute to 

the reduction of total energy consumption for the same 

sensing effect.  

The rest of the paper is organized as follows: Section 2 

compares related work with our research. Sections 3 and 4 

describe the design and implementation of CSSP, 

respectively. Section 5 shows the results of preliminary 

experiment. Section 6 concludes this work.     

 



 

  
 

 

2. Previous Work 

CenceMe [2] integrates sensing presence and social  

networks by capturing a user’s current activity status  and 

sharing such information in social network. By developing 

and evaluating a prototype on a Nokia N95 mobile phone, 

the energy consumption was studied at  different sensing 

intervals, i.e., the user determined the  sampling rate in 

advance and thereafter fixed it through-out the recording 

duration. BikeNet [1] allows cyclists  to share information 

on themselves and the paths they traverse. Bicycles are 

equipped with a Nokia N80 mobile phone and Moteiv 

Tmote Invent motes and other  necessary sensors. The 

sampling rate in the continuous sensing mode is set 

according to the cyclist’s preference  profile. 

 

Energy Efficient Mobile Sensing System (EEMSS) 

[5]uses hierarchical sensor management strategy to 

recognize user states as well as to detect state transitions.  

The states are sensor assignment functional block to  turn 

sensors on and off based on a user’s current condition. By 

powering only a minimum set of sensors  and using 

appropriate sensor duty cycles EEMSS significantly 

improves device battery life. Musolesi e t al. [3] resent 

several techniques for uploading sensed information when 

connection is available. Uploading activity attempts to 

reach an acceptable trade-off in terms of ac-curacy and 

energy consumption given the requirements  of the sensing 

systems. The server uses Markov model  to predict the 

current state when fresh information is  not present. The 

fresh information is sent if and only if  the server 

information diverges from that currently calculated in 

real-time on the mobile phones. Aquiba [5] s a cooperative 

sensing approach where each user adjusts  upload rate 

according to the number of nearby users.  To minimize the 

upload rate, each user utilizes short -range radio to 

discover nearby users. Then sensing task  is distributed 

equally among the users.  This work differs from the 

previous work in that we do not assume inter-phone 

communications. 

  

 

3. Design 

In this section we describe the design of CSSP. The 

CSSP messages are designed as requests from a client and 

its response from a server.  

 

Entities 

In CSSP, two entities are defined: CSSP-client and 

CSSP-server.  

CSSP-client: In many cases, global IP addresses are not 

assigned to smart phones in an Internet Service Provider. 

Therefore we allow a private IP address for a client. This 

leads to a protocol design in which a client initiates 

sending a message to a server as its communication 

counterpart. The CSSP-client also  continuously senses 

data and transmits them to a CSSP-server. Unlike video or 

audio streams, the interval between two consecutive 

transmission ranges in the order of minute.  

CSSP-server:  It manages CSSP-client information and 

data and controls an interval of sensing and transmitting 

data. It corresponds to an incoming message from 

CSSP-client and responds to it.  

 

Protocol Stack 

CSSP is implemented over HTTP, because ports without 

well-known ports can be closed for security.  

 

          

          Figure 1   Protocol Stack 

 

Messages 

  CSSP-client 

1. CheckIn 

 The CSSP-client notifies the server of 

current location and type of sensor list.  

2. PutData 

 The CSSP-client notifies the server of 

sensor-data, date, and time. 

3. CheckOut 

 The CSSP-client notifies the server of 

the end of sensing.  

 

  CSSP-server 

1. ACKforCheckIn 



 

  
 

 

 The CSSP-server notifies the client of 

client peculiar ID, type of sensor, an interval.  

2. ACKforPutData 

 The CSSP-server notifies the client of 

latest interval. 

3. ACKforCheckOut 

 The CSSP-server notifies the client of 

a message that tells your information has been 

deleted.  

  

Message Format 

Messages are represented by JSON.CSSP uses CSSP 

code in order to discriminate CSSP messages.  

 

  CSSP-client 

1. CheckIn 

{ “csspcode” : CHECK_IN , 

 “latitude” : 35.5395 , 

 “longitude” : 139.4514 ,  

 “sensortypes” : [1 , 2 , 3 , 4 , …] 

}  

2. PutData 

{ “id” : 1, 

 “date” : “2012-12-22” , 

 “time” : “12:30:00” , 

 “value” : 34.5 , 

“pre_times” : [ “2012-12-22_12:00:00” , 

“2012-12-22_11:30:00”] , 

 “pre_values” : [ 35.5 , 33.3 ] 

} 

3. CheckOut 

{ “csspcode” : CHECK_OUT , 

“id” : 1 

} 

 

  CSSP-server 

 

4. ACKforCheckIn 

{ “id” : 1 , 

 “sensortype” : 3 , 

 “interval” : 30 , 

 “csspcode” : CHECK_IN 

} 

5. ACKforPutData 

{ “csspcode” : PUT_DATA , 

 “interval” : 60  

} 

6. ACKforCheckOut 

{ “csspcode” : CHECK_OUT , 

 “message” : “Thank you for your sensing.” 

} 

 

 

Algorithm of determining an interval of sensing and 

transmitting data 

 

Equation (1) means an algorithm of determining an 

interval of sensing and transmitting data for CSSP -client. 

M shows the number of data needed every hour. N shows 

the number of CSSP-client. 

( 60 / M ) * N      (1) 

 

 

4. Implementation 

. 

  CSSP-client 

CSSP-client is implemented as Android application. 

This consists of CSSPclient and SensingService.  

1. CSSPclient 

  It communicates with CSSPserver and 

control SensingService.  

2. SensingService 

  It communicates with CSSPserver, 

schedules sensing time, and senses data. 

 

             

             Figure 2 CSSP Messages  

              

  CSSP-server 



 

  
 

 

CSSP-server is implemented as HTTP server written by 

Java. This consists of CSSPserver and ConnectionThread.  

1. CSSPserver 

It creates ConnectionThread, if it receive a 

socket from CSSP-client. 

2. ConnectionThread 

It analysis a socket and processes data 

according to every message.  

         

          Figure 3 Connection Threads 

 

5. Experiment 

We conducted an experiment using CSSP-implemented 

Android mobile phones for noise-level sensing. This 

experiment was done for two hours at one specified area. 

As the number of clients increases, the transmission 

interval changes between 1, 5, 10, 30 minutes. One session 

for the same interval lasted 30 minutes and the residual 

quantity of battery and battery consumption rates were 

measured. Figures 4 and 5 show that changing 

transmission interval caused by the CSSP control was 

effective in reducing the total energy consumption.  

 

 

           Figure 4  Residual quantity of battery 

 

 

         Figure 5 Battery consumption rate  

 

 

6. Conclusion 

This paper describes the design and implementation of 

CSSP. Although CSSP is beneficial when users move 

around with mobile phones, we have not designed a case 

for mobility. This remains for our future work.  

 

References 

[1]  S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. 

Peterson, G.-S. Ahn, and A. T. Campbell. The BikeNet  

mobile sensing system for cyclist experience mapping. In 

Proceedings of the 5th International Conference on 

Embedded Networked Sensor Systems (SenSys 2007), pages 

87–101, Sydney, Australia, Nov. 2007.  

[2]  E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, 

M. Musolesi, S.B. Eisenman, X. Zheng, and A.T. Campbell, 

“Sensing meets mobile social networks: the design, 

implementation and evaluation of the CenceMe 

application,' '  Proceedings of the 6th International 

Conference on Embedded Networked Sensor Systems 

(SenSys 2008), Raleigh, North Carolina, USA, pp.337 -350, 

Nov. 2008. 

[3]  M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T. 

Campbell. Supporting energy-efficient uploading strategies 

for continuous sensing applications on mobile phones. In 

Proceedings of the 8th International Conference on 

Pervasive Computing (Pervasive 2010), pages 355 –372, 

Helsinki, Finland, May 2010. 

[4]  Niwat Thepvilojanapong, Shin'ichi Konomi, and 

Yoshito Tobe, "A Study of Cooperative Human Probes in 

Urban Sensing Environments," IEICE Trans . 

Comm,Vol.E93-B, No.11, pp. 2868 - 2878, Nov. 2010.  

[5]  Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. 

Hong, B. Krishnamachari, and N. Sadeh. A framework of 

energy efficient mobile sensing for automatic user state 

recognition. In Proceedings of the 7th Annual International 

Conference on Mobile Systems, Applications, and  

[6]  Services (MobiSys 2009), pages 179–192, Krakow, 

Poland, June 2009.  

 


